等离子电瓶修复技术介绍
来源:网络来源 日期:2010-9-1 作者:全球电池网 点击:

物质有四种形态:固、液、气,等离子。

等离子由大量自由电子和离子组成的、整体上近似电中性的物质状态。它有较大电导率,其运动主要受电磁力支配。当气体的温度足够高时,气体的分子或原子电离成正离子和自由电子,电离气体就是典型的等离子体。实际上,只有 0.1%气体被电离的电离气体已经具有明显的等离子体性质,如果有1%气体被电离,则已是电导率很大的等离子体。用于热核反应的高温等离子体则几乎是完全电离的等离子体宏观上的电中性,是指它所含有的正电荷和负电荷几乎处处相等。

在等离子体中,带电粒子之间的相互作用主要是长程的库仑力,每个粒子都同时和周围很多粒子发生作用,而与一般气体分子间的短程相互作用力大不相同,因此等离子体在运动过程中一般都表现出明显的集体行为。例如,当电子和正离子宏观分离时,其间的相互作用形成静电回复力,导致电子和正离子的集体振荡。由于等离子体由带电粒子组成,在有外磁场存在的情况下,等离子体的运动将受到磁场的强烈影响和支配。

另外,在高温等离子体中,原子核和电子的温度极高,热运动剧烈,彼此猛烈碰撞,可能实现热核聚变反应。以上这些都表明等离子体的性质与气体颇为不同,它是区别于气态、液态、固态的物质存在的又一种聚集状态,故又称为物质第四态。组成粒子和一般气体不同的是,等离子体包含两到三种不同组成粒子:自由电子,带正电的离子和未电离的原子。这使得我们针对不同的组分定义不同的温度:电子温度和离子温度。轻度电离的等离子体,离子温度一般远低于电子温度,称之为“低温等离子体”。

高度电离的等离子体,离子温度和电子温度都很高,称为“高温等离子体”。 等离子能打破电池内部所形成硫酸晶体离子结合的机械状态,消除电池极板上的硫化结晶体。 铅酸蓄电池充、放电化学反应的原理方程式如下: 1.放电:蓄电池对外电路输出电能时叫做放电。蓄电池连接外部电路放电时,硫酸会与正、负极板上的活性物质产生反应,生成化合物“硫酸铅”,放电时间越长,硫酸浓度越稀薄,电池里的“液体”越少,电池两端的电压就越低。

化学反应过程如下:(正极) (电解液) (负极) (正极) (电解液)(负极) PbO2 + 2H2SO4 + Pb → PbSO4 + 2H2O + PbSO4 (放电反应) (过氧化铅) (硫酸) (海绵状铅) 2.充电:蓄电池从其他直流电源获得电能叫做充电。充电时,在正、负极板上的硫酸铅会被分解还原成硫酸、铅和氧化铅,同时在负极板上产生氢气,正极板产生氧气。电解液中酸的浓度逐渐增加,电池两端的电压上升。当正、负极板上的硫酸铅都被还原成原来的活性物质时,充电就结束了。

在充电时,在正、负极板上生成的氧和氢会在电池内部“氧合”成水回到电解液中。化学反应过程如下:(正极) (电解液) (负极) (正极) (电解液) (负极) PbSO4 + 2H2O + PbSO4 → PbO2 + 2H2SO4 + Pb (充电反应) (硫酸铅) (水) (硫酸铅) 从以上的化学反应方程式中可以看出,铅酸蓄电池在放电时,正极的活性物质二氧化铅和负极的活性物质金属铅都与硫酸电解液反应,生成硫酸铅,在电化学上把这种反应叫做“双硫酸盐化反应”。

蓄电池刚放电结束时,正、负极活性物质转化成的硫酸铅是一种结构疏松、晶体细密的结晶物,活性程度非常高。在蓄电池充电过程中,正、负极疏松细密的硫酸铅,在外界充电电流的作用下会重新还原成二氧化铅和金属铅,蓄电池就又处于充足电的状态。

正是这种可逆转的电化学反应,使蓄电池实现了储存电能和释放电能的功能。电池在长期的使用过程中,由于各种不同的原因,使电池的正负极板表面附着了大量的硫酸结晶体,阻碍了正负极板上的活性物质和电解液的正常接触,从而大大限制了电池的容量和使用时间。

上一篇: 电动车蓄电池保养篇 下一篇:  没有了
版权声明:全球电池网转载作品均注明出处,本网未注明出处和转载的,是出于传递更多信息之目的,并不意味 着赞同其观点或证实其内容的真实性。如转载作品侵犯作者署名权,或有其他诸如版权、肖像权、知识产权等方面的伤害,并非本网故意为之,在接到相关权利人通知后将立即加以更正。
评论表单加载中...
正在加载评论列表...
本文共有 条评论
>>